10 research outputs found

    Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales

    Get PDF
    In this work, we use the generalized Riccati transformation and the inequality technique to establish some new oscillation criteria for the second-order nonlinear delay dynamic equation (p(t)(xΔ(t))Îł)Δ+q(t)f(x(Ď„(t)))=0, on a time scale , where Îł is the quotient of odd positive integers and p(t) and q(t) are positive right-dense continuous (rd-continuous) functions on 𝕋. Our results improve and extend some results established by Sun et al. 2009. Also our results unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our main results

    Oscillation of Second-Order Nonlinear Delay Dynamic Equations with Damping on Time Scales

    Get PDF
    We use the generalized Riccati transformation and the inequality technique to establish some new oscillation criteria for the second-order nonlinear delay dynamic equation with damping on a time scale T(r(t)g(x(t), xΔ(t)))Δ+p(t)g(x(t), xΔ(t))  + q(t)f(x(τ(t)))=0, where r(t), p(t), and q(t) are positive right dense continuous (rd-continuous) functions on T. Our results improve and extend some results established by Zhang et al., 2011. Also, our results unify the oscillation of the second-order nonlinear delay differential equation with damping and the second-order nonlinear delay difference equation with damping. Finally, we give some examples to illustrate our main results

    Interval Oscillation Criteria for Forced Second-Order Nonlinear Delay Dynamic Equations with Damping and Oscillatory Potential on Time Scales

    Get PDF
    We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory potential of the form rtg1xt,xΔtΔ+p(t)g2(x(t),xΔ(t))xΔ(t)+q(t)f(x(τ(t)))=e(t), on a time scale T. We will use a unified approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our results are more general and extend the oscillation criteria of Erbe et al. (2010). Also our results unify the oscillation of the forced second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our results

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales

    No full text
    In this work, we use the generalized Riccati transformation and the inequality technique to establish some new oscillation criteria for the second-order nonlinear delay dynamic equatio

    Impact of circ-0000221 in the Pathogenesis of Hepatocellular via Modulation of miR-661–PTPN11 mRNA Axis

    No full text
    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in Egypt. A deep understanding of the molecular events occurring in HCC can facilitate the development of novel diagnostic and/or therapeutic approaches. In the present study, we describe a novel axis of hsa-circ-0000221–miR-661–PTPN11 mRNA proposed by in silico and in vitro analysis and its role in HCC pathogenesis. We observe a reduction in the expression levels of hsa-circ-0000221 and PTPN11 mRNA in HCC patients’ sera tested compared with control subjects. The reduction occurs with a concomitant increase in the expression of miR-661. Furthermore, the introduction of exogenous hsa-circ-0000221 into Hep-G2 or SNU449 cell lines results in detectable decrease in cellular viability and an increase in apoptotic manifestations that is associated with G1 accumulation and CCDN1 overexpression. Altogether, these findings indicate the tumor-suppressive role of hsa-circ-0000221 in HCC, which acts through miR-661 inhibition, along with a subsequent PTPN11 mRNA increase, where PTPN11 is known to inhibit cell proliferation in many forms of cancer. Our study encourages further investigation of the role of circRNAs in cancer and their potential use as molecular biomarkers

    The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt

    No full text
    corecore